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Abstract

This background paper provides new empirical evidence on the size of the Finnish fiscal

policy multiplier for the period from 1975 to 2018. Using the tools of Bayesian time-varying

parameters approach, I estimate a time-varying multiplier for government consumption for

Finland. Based on the research results, it is not possible to conclude whether the government-

consumption multiplier has varied over time or not.

1 Introduction

In this background report, I use a Bayesian time-varying paramaters vector autoregressive model

(TVP VAR) to examine whether a government consumption multiplier for Finland has varied over

the past 34 years. Despite being introduced more than a decade ago, no one has, to the best of my

knowledge, used the TVP VAR model for estimating Finnish government consumption multiplier

before. Given the scarce existing literature on government consumption multipliers for Finland, my

estimation also provides new empirical evidence on the size of the Finnish government consumption
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multiplier.

There are several economic theories showing that the size of government spending multiplier can

be dependent on a country’s monetary system, trade openness and stage of the business cycle. For

instance, Michaillant (2014) introduces a New Keynesian model in which the effect of the govern-

ment policy varies over the business cycle. In his study, variation of the government-unemployment

multiplier, a close relative of the government consumption multiplier, is not dependent on coun-

tercyclical financial frictions. Christiano, Eichenbaum and Rebelo (2011) argue that government

spending multiplier can be large when the nominal interest rate is close to zero and does not respond

to an increase in government sepending. The fiscal space theory model by Perotti (1999) suggests

that the effect of government expenditure on private consumption differs between normal times

and times when public debt or interest rates are high. Empirical evidence of government spending

multipliers by Ilzeztki, Mendosa and Végh (2012) shows that the value of government spending

multiplier is larger than one for countries operating under predetermined exchange rates. These

empirical and theoretical research support the hypothesis of time-varying government consumption

multiplier for Finland. Moreover, judging by empirical evidence of time-variation in fiscal policy

multipliers for other countries, such as in the euro area, in the United States and in the United

Kingdom, my hypothesis seems to be worth of investigating (Kirchner, Cimamodo and Hauptmeier

2010; Pereira and Lopes 2010; Glocker, Sestieri and Towbin 2019).

This paper is organised as follows. In the first section, I shortly discuss the earlier literature on

fiscal multipliers for Finland and present the econometric methodology used in this paper. In the

second section, I introduce my small model for the Finnish economy. The third section presents

the results from the estimation. The fourth section concludes.

1.1 Literature Review

There has been very little research on the size of fiscal policy multiplier for Finland. Furthermore,

the Bayesian approach is rarely used to study the size of those multipliers. I narrow the literature

review on government spending multipliers because other fiscal multipliers, such as tax multipli-
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ers, are not estimated in this paper. More details on the variables used for the estimation can

be found in section 2.1. In addition to aforementioned, I focus on literature that employ vector

autoregression (VAR) models. The VAR model for econometric was first developed by Sims (1980).

Since the 1980s, it has become the workhorse model in modern macroeconometric literature with

a wide range of applications. In fiscal policy context, VAR models are used to describe how the

economy is responding for a change in fiscal policy. (Auerback and Gorodnichenko 2012; Kilian

2017; Kuismanen and Kämppi 2012; Nakajima 2011; Sims 1980.)

Kuismanen and Kämppi (2010) have been the first to study effects of fiscal policy in Finland.

In order to analyse whether fiscal policy decisions have real effects on Finnish economy, Kuismanen

and Kämppi use two VAR based econometric approaches: structural vector autoregression (SVAR)

and Vector Stochastic Process with Dummy Variables. Their results suggest that an increase in

government spending has a negative effect on the GDP of Finland during a period from 1990 to

2007. Moreover, both of the models seem to suggest that an increase in government spending

crowds out economic activity in the private sector.

A study by Lehmus (2014) estimates fiscal multipliers for Finnish economy for the time pe-

riod from 1975 to 2011. In his study, Lehmus uses Blanchard and Perotti’s (2002) SVAR approach.

Lehmus’s becnhmark model specification suggests that the fiscal multiplier for government spending

reached its peak value of 1.30–1.56 for five quarters after a positive public spending shock. After-

wards, the multiplier decreases rapidly close to zero. (Lehmus 2014). Likewise, Virkola’s (2014)

research on the effects of fiscal policy suggests that a positive government spending shock has a

positive effect on economic growth of Finland, although it is only around one percent. Similarly

to Lehmus, Virkola uses modified Blanchard and Perotti’s (2002) SVAR approach in his study. In

addition, Virkola finds that public expectations, measured as government spending forecast errors,

have no effect on the size of government spending multiplier. Conversely, Haavanlammi suggests in

her study on Kansantaloudellinen aikakauskirja – 4/2017 that a government spending increase as

an expansionary fiscal policy action increases GDP by 0.5 times if private agents cannot anticipate

the increase. The government spending multiplier is roughly negative for first few years if the in-

crease is anticipated by the agents. (Haavanlammi 2017.)
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More extensive research by Kuusi and Keränen (2016) observes that a fiscal multiplier for Fin-

land is larger in recession than in expansion. In their study, Kuusi and Keränen use an augmented

version of Auerbach and Gorodnichenko’s (2012) nonlinear smooth transition vector autoregressive

(STVAR) model to quantify time-varying fiscal multipliers for Finland. The regime–specific govern-

ment spending and tax multipliers are estimated for the time period from 1972Q2 to 2015Q2. The

results of the estimation suggest that the expectation augmented government spending multiplier

can rise to two at the bottom of the economic cycle. In the contrast, the spending multiplier can

be negative in economic expansion. (Keränen and Kuusi, 2016.) However, the time-variation of

the government spending multiplier beyond business cycle dependence is beyond the scope of their

study.

The studies presented thus mainly provide the evidence that there is no universal agreement on

the size of fiscal multipliers for Finland. Some of the results suggested that the spending multiplier

would be larger for Finland than for some other OECD countries (see, for example, Auerbach and

Gorodnichenko 2012, and Batini, Eyraud, Forni and Weber 2014, for discussion). Furthermore,

there seems to be some evidence indicating that the government spending multiplier is larger in

economic recession than in economic expansion (e.g, Keränen and Kuusi 2016). Overall, these stud-

ies outlined a need for further research on government spending multipliers for Finland, especially

on the size of government spending multipliers for the economy on different phases of economic cycle.

1.2 Econometric Methodology

The model used in this research paper is a multivariate time series model with stochastic volatil-

ity. After being introduced by Primiceri (2005), the model has become a broadly used model for

estimating the effects of changes in monetary and fiscal policy regimes. Primiceri (2005) allowed

stochastic volatility in the variance covariance matrix by assuming its parameters follow a random

walk process. This means that the time variation in the model derives from coefficients and the

law of motion of variance covariance matrix’s innovations. On the contrary, Nakajima et al. (2011)

assume all the model’s parameters to follow a first order random walk process. This assumption

allows the parameters to vary over time both temporarily and permanently. As mentioned by Naka-
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jima et al. (2011), allowing stochastic volatility for all parameters helps to avoid misspeficiation

that might be likely if possible variation of the volatility in disturbances is overlooked.1 Thus, I

follow closely Nakajima et al. (2011) in the specification of my model. For more detailed derivation

of the model, see the appendix C.

Following Nakajima (2011) and Primiceri (2005), I describe the VAR model of time varying

parameters and stochastic volatility as

yt = ct +B1,tyt−1 + ...+Bs,tyt−s + et, t = s+ 1, . . . , n. (1)

where ct is a k × 1 vector of time varying coefficients, yt is a k × 1 vector of endogeneous variables

and Bs, k = 1 . . . , n are n×n matrices of time varying coefficients. I assume that et ∼ (0,Ω), where

Ω is a n×n time varying covariance matrix. Futhermore, I consider a simple recursive identification

for the VAR system by assuming that

AtΩtA′t = ΣtΣ′t, (2)

where At is the lower triangular matrix with diagonal elements equal to one,

A =


1 0 . . . 0

a21,t
. . . . . .

...
...

. . . . . . 0

ak1 . . . ak,k−1 1

 (3)

and Σt is the diagonal matrix

Σ =


σ1,2 0 . . . 0

0 σ2,t
. . .

...
...

. . . . . . 0

0 . . . 0 σn,t

 . (4)

1A public consumption multiplier for Finnish economy was also estimated using Primiceri’s (2005) original model.

The estimation results suggested that the fiscal policy of the government has no effect on the economic activity of

Finland. However, since there is high volatility in the Finnish data, Primiceri’s model might have produced biased

estimate of time-varying coefficients because it ignores a possible variation of the volatility in disturbances. Hence,

allowing stochastic volatility in all parameters of the model is a sensible choice.
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Hence, I can rewrite equation (2) as

Ωt = A−1
t ΣtΣ′tA′t−1. (5)

All the coefficients on the right hand side of the equation (1) are piled to a vector βt. I assume that

Xt = It � (y′t−1, . . . , y
′
t−s), where � stands for Kronecker product. Thus, I can write

yt = X ′tβt +A−1
t Σtεt, t = s+ 1, ...n, (6)

which is a TVP VAR model with stochastic volatility and the time varying parameters βt, At and

Σt. In addition, I define at = (a21, a31, a32, a41, ak,k−1)′ as a vector of lower triangular elements

of At and ht as a vector of logσ2
t , ht = (ht1, . . . , hkt)′, with hjt =logσ2

jt for j = 1, . . . , k and

t = s + 1, . . . , n. In a similar vein to Nakajima et al. (2011), I assume that the parameters βt, At
and Σt follow the first order random walk process:

βt+1 = βt + uβt ,

at+1 = at + uat,

ht+1 = ht + uht

(7)


εt

uβt

uat

uht

 ∼ N
0,


I 0 0 0

0 Σβ 0 0

0 0 Σa 0

0 0 0 Σh



 , (8)

where t = s + 1, . . . , n. Also, I assume that initial states of parameters follow normal distribution

as βs+1 ∼ N(µa0 ,Σa0), as+1 ∼ N(µa0 ,Σh0) and hs+1 ∼ N(µh0,Σh0), where Σβ , Σa and Σh are

assumed to be diagonal matrices. Due to the hierarchical prior in the model’s initial states, another

prior distribution is assumed for these hyperparameters. I will discuss the choice of prior distribu-

tions in sections 1.3.2 and 2.2. The TVP regression forms a state space model, in which I regard

a and h as state space variables. The assumption of the lower triangularity of the At matrix is a

simple recursive identification of the VAR system.

Following Nakajima et al. (2011), the parameters of the model are assumed to follow the random

walk process instead of the stationary process. To make the estimation accurate, the parameters
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of the model have to be decreased by assuming that the innovations of parameters follow random

walk process. (Nakajima et al. 2011.) As the TVP VAR model is usually implemented by Bayesian

inference, the number of model paramaters chosen to be small in nearly every research. Moreover,

the number of autoregressive lags is set to be two by several researches. Undoubtedly, as Kilian and

Lütkepohl (2017) mention, a large number of parameters and autoregressive lags causes high dimen-

sionality in the posterior, which would make a Bayesian simulation for the model computationally

impractical. As a consequence, a large number of autoregressive lags might lead to misspecification.

The role of Bayesian inference in my TVP VARmodel is discussed more detail in the next subsection.

1.3 Bayesian inference

1.3.1 MCMC algorithm

As Nakajima (2011) and Primiceri (2005) suggest, the Bayesian approach is more preferable for

nonlinear state space models such as TVP VAR than the frequentist approach. In the TVP VAR

model, Bayesian methods are used for generating independent samples from the posterior draws.

As mentioned by Primiceri (2005), use of Bayesian methods provides more accurate and efficient

estimation for models with unobservable components and nonlinearities2. Following Nakajima et

al. (2011) and Primiceri (2005), I use a popular Bayesian simulation method, MCMC algorithm, for

numerical evaluation of the posterior of the model parameters. As a consequence of nonlinearity in

the model, the use of other methods such as the linear Gaussian state space method or the standard

Kalman filter would be computationally too demanding. In general, MCMC algorithms approx-

imate the exact posterior distribution of the parameters under certain prior probability densities

that have been set in advance.

In accordance with the study of Nakajima et al. (2011), I use a joint sampling scheme for

β = βt
n
t=s+1, a = at

n
t=s+1 and h = ht

n
t=s+1, and the simulation smoother by Durbin and Koorpman

(2002) to sample the time-varying coefficient β and a parameter a. As a result, the TVP VAR

model can be written as a linear Gaussian state space form and the sampling of the time-varying
2More detailed information about the strengths of Bayesian inference concerning this model can be found in

Primiceri (2005, p.7).
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parameters becomes efficient. Similarly Nakajima et al. (2011), I evaluate the posterior distribu-

tion by using a multi-move sampler, which is developed for linear state space models by Shephard

and Pitt (1997) and extended for nonlinear state space models by Watanabe and Omori (2004).

(Greenberg 2012; Nakajima 2011; Shephard and Pitt 1998; Watanabe and Omori 2004).

Following the MCMC implementation by Nakajima et al. (2011)3, I define data as y and let

y =
{
yt
}
and ω =

(
Σβ ,Σa,Σh

)
and set the prior probability density as π(ω) for ω. A sample from

the posterior distribution π
(
β, a, h, ω|y

)
can be generated following Nakajima et al. (2011):

1. Initialise β, a, h, ω

2. Sample β|a, h,Σβ , y

3. Sample Σβ |β

4. Sample a|β, h,Σa, y

5. Sample Σa|a

6. Sample h|β, a,Σh, y

7. Sample h|h

8. Go to step 2.

Similarly to Nakajima et al. (2011), the steps from 2 to 8 are looped to generate M = 20 000

sample draws.

1.3.2 Priors

In the Bayesian approach, the posterior distribution is computed from the likelihood function and

the prior probability density that is set by a researcher beforehand. Hence, a specification of prior

distribution is necessary and an important part of the estimation process. Priors should be chosen

carefully to avoid implausible behaviour of the flexible TVP VAR model. As Koop and Korobilis
3Details of the multi-move sampler can be found in Nakajima et al. (2011, p. 240–243).
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(2010) demonstrate, the choice of prior distribution might have an effect on the estimation results

from the model. The prior distribution and hyperparameters can be either specified by utilising all

information from previous empirical research and theoretical applications about the subject, or be

specified by selecting a portion of the observations as a training sample. Next, the training sample is

combined with a relatively uninformative prior to evaluate a posterior distribution, which becomes

the prior for actual estimation. (Greenberg 2011; Koop and Koroblis 2010.) Following Nakajima et

al. (2011) and Primiceri (2005), I select first ten years from my time series as a training sample to

evaluate a prior distribution for the initial states of parameters.4 The distribution is chosen based

on the OLS estimators from a time invariant VAR.

I assume that my model is hierarchical and place another prior distribution for Σβ in βs+1 ∼

N(µa0 ,for Σa0), for Σa in as+1 ∼ N(µa0 ,Σh0) and hs+1 ∼ N(µh0,Σh0). The choice to use a hier-

archical prior reflects my uncertainty about the size of the VAR coefficients between the training

sample and the actual sample. A distribution confined to positive values such as Inverse-Gamma

distribution could suit to the situation since 0 < Σβ ,Σa,Σh < ∞. (Greenberg 2010; Kirchner,

Cimado and Hauptmeier 2010.) The Inverse-Gamma distribution is often used to specify nonin-

formative priors for variance parameters. Since in the Inverse-Gamma distribution the continuous

parameters are constrained to be non-negative, it is a plausible choice for my model’s hierarchical

prior distribution. Also, given the fact that I place the prior distribution for parameters in one

dimensional paramater space, the univariate Inverse-Gamma distribution is a natural choice. In

recent TVP VAR literature, the hierarchical Inverse-Gamma prior distribution is also placed for

the diagonal elements of covariance matrices by, for instance, Bauemaister and Benati (2010) and

Kirchner Cimado and Hauptmeier(2010). Furthermore, the Inverse-Gamma distribution is a con-

jugate prior for the variance of normal distribution, which means that the posterior distribution is

in the same family of distributions as the prior. I will discuss about prior distributions, hyperpa-

rameters, the calibration process and the robust checks in the section 2.2.

4The estimation is also performed for the whole sample from 1975:Q2 to 2018:Q4. In addition, a training sample

of five years is being tested. The results suggest that length of the estimation period has a small effect on the size

of the government consumption multiplier and the estimation results of the parameters.
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2 The TVP VAR model for Finnish economy

In this section I present the TVP VAR model for Finnish economy. In contrast to earlier literature

on TVP VAR models with stochastic volatility5, there are four variables in the model instead of

three variables. The model variables are in the following order: inflation p, the real government

consumption G, the real private consumption C and the real gross domestic product x. Thus, the

TVP VAR model for the Finnish economy can be written as yt = (pt, Gt, Ct, xt)′. I assume that

the recursive identification of the model is in the same order. The structural interpretation of the

model will be discussed in the section 2.2. To avoid misspeficiation of the model, I keep the model

relatively small by setting the number of autoregressive lags as two. As Primiceri (2005) mentions,

a large number of variables in the model requires tighter priors to avoid bad behaviour of the model.

Consequently, I choose a tighter prior for βt and test the sensitivity of priors with a few robustness

checks.

2.1 Data

The data used in this estimation is a quarterly and seasonally adjusted Finnish data for the time

period from 1975Q1 to 2018Q4. The data was kindly provided by the Statistics of Finland. Real

government consumption, real private consumption and GDP series are divided by the total pop-

ulation of Finland. Subsequently, the series are logaritmised and first order differenced similarly

to Nakajima et al. (2011). Finally, the series are multiplied by 100. The inflation series are con-

structed by taking an annual differential from the GDP deflator, which is calculated by subtracting

the real value GDP from the nominal value GDP and multiplying the result with 100.

The model variables are selected on the basis of both Bayesian information criterion and Akaike

information criterion, which provide a mean for statistical model selection from a set of data. The

procedure is carried out by constructing eight time-invariant VAR models with different set of

variables and two autoregressive lags. The model with the smallest BIC and AIC test results is

selected. The test results indicate that a four-variable VAR model with inflation, real government

consumption, real private consumption and real output has better quality than other models tested,
5see for example Cogley and Sargent (2005), Primiceri (2005), Nakajima et al.(2011)
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e.g. a four variable VAR model with inflation, real government consumption, net taxes and real

output. As a result, the set of variables used in this paper is different from the earlier literature of

Finnish fiscal multipliers (see for instance Keränen and Kuusi 2016; Kuismanen and Kämppi 2010

and Lehmus 2014). The time series of the variables are illustrated in Figure 7 in the Appendix B.

2.2 Prior distributions and hyperparameters

I assume that the initial states of paramaters in the model follow the Normal distribution. My

assumption is consistent with earlier TVP VAR literature6. I verify the assumption by using the

Ordinary Least Squares (OLS) estimators that are computed for a time invariant VAR estimated

from the training sample. The training sample covers first ten years of the data set (40 observa-

tions from 1975:Q1 to 1984:Q4). The assumption of initial state of paramaters following normal

distribution is also plausible from the theoretical point of view. As Nakajima et al. (2011) argue,

the first order random walk process for all the model parameters requires the normal distributed

prior for the initial state of each time varying parameter. Given the aforementioned, I assume that

βs+1 ∼ N
(
µβ0 , 3× Σβ

)
as+1 ∼ N

(
µa0 , 10× Σa

)
hs+1 ∼ N

(
µh0 , 10× Σh

) (9)

where µβ0 , µa0 and µh0 are the OLS estimators for the VAR coefficients β0, and for vectors of para-

maters a0 and h0. My choice for degrees of freedom for as+1 and hs+1 is arbitrary. However, the

same number of degrees for freedom is also assumed for a0 and h0 by Kirchner et al. (2010) who

examined effects government spending shocks in euro area using a TVP-VAR model. As mentioned

by Primiceri (2005) and Nakajima et al. (2011), a tighter prior for the covariance matrix is required

as the consequence of time variation in all of the model parameters. Despite the fact that some

researchers have claimed this choice to be arbitrary, I follow Primiceri (2005) and Nakajima et al.

(2011) and set a tighter prior for β and more informative prior for a0 and h0.

6For instance, this assumption was made by Bauemaister and Benati (2010), Benati and Mumtaz (2007), Nakajima

et al. (2011), Primiceri (2005), Kirchner et al. (2010) and Pereira and Lopes (2010).
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As Gelman (2006) mentions, in the hierarchical model, hyperparamaters must be given their own

prior distributions. The hyperparameters for the inverse gamma distribution as a prior distribution

in hierarchical model can be specified by utilising information from earlier research. Following

Cogley, Primieri and Sargent (2010); Baumeister and Benati (2010) and Kirchner et al. (2010), I

choose to define the hyperparameters for inverse gamma distribution as follows:

(Σβ)−2
i ∼ Gamma(10, 0.01)

(Σa)−2
i ∼ Gamma(10, 0.01)

(Σh)−2
i ∼ Gamma(10, 0.01)

(10)

My choice for scale paramaters kβ , ka, kh = 0.01 is consistent with recent literature. Cogley and

Sargent (2001), Primiceri (2005) and Baumeister and Benati (2010) specified their scale paramaters

equivalently. Following Baumeister and Benati (2010), I set degrees of freedom for each hyperpa-

rameter to 10. Utilising information from researchers that have applied the TVP VAR model for

the monetary or fiscal policy of the United States or of the euro area can be criticised as being a

naive approach for choosing priors. Hence, I have specified rather uninformative scale parameters

to reflect my uncertainty about these values. Nevertheless, due to a lack of earlier research using

the TVP VAR models for estimating effectiveness of Finnish fiscal policy, it is inevitable to utilise

information from studies concerning other countries.

2.3 Fiscal policy and structural interpretation

In this report, the time-varying government consumption multiplier for Finland is estimated for the

sample period in which Finland experienced different phases of business cycle. In the 1980s, Finland

experienced a strong economic boom. For this reason one of the identified government consumption

shocks is computed for 1986:Q1 to compute the size of the government consumption multiplier for

that period. In the early 1990s, the Finnish economy suffered from one of the worst economic

recessions in its history. The depression started in 1991 and thus, one of the identified government

consumption shocks is computed for 1991:Q1 to estimate the size of the government-consumption

multiplier during the depression. The third identified government consumption shock is computed
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for 2007:Q1, which was also the beginning of the Financial crises. The fourth identified government

consumption shock is computed for 2017:Q1 to estimate the size of the government consumption

multiplier in the most recent economic expansion.

I investigate the impact of government consumption shocks on real output, private consumption

and inflation. Following Nakajima (2011), I assume that contemporaneous interactions between the

model variables are recursively identified for simplicity. Thus, no additional identifying restrictions

on the matrix B0 is needed since the recursive identification is sufficient to identify dynamic re-

sponses of yt to government consumption shocks (Christiano, Eichenbaum and Evans 1999).7 The

recursive ordering is a commonly used identification strategy in the previous TVP VAR literature.

It is especially assumed by Primiceri (2005) and Cogley and Sargent (2001) in their investigation

on the effects of monetary policy. In addition, Kichner et al. (2010) use the approach to estimate

time-variation of fiscal policy in the Euro area. The most prominent pitfall of this identification

strategy is that the ordering of the variables in the covariance matrix influences the result.

Similarly to Nakajima et al. (2011), I assume that the shocks to the innovations of the time-

varying parameters are uncorrelated amongst at, βt and ht. Since having the ordering of the

variables is as aforementioned, I define the innovation in the second equation of the VAR as a

structural government consumption shock. Consequently, all variables apart from inflation are

allowed to react to the government consumption shock after a quarter. The real government con-

sumption responds to a shock in inflation within a quarter and to shocks in other variables after a

quarter. In recursive identification an error term in each regression is assumed to be uncorrelated

with the error in preceding equation. If the contemporaneous effect of government consumption

shock on inflation was not equal to zero, this assumption would be violated. Thus, the identification

strategy would yield inconsistent estimates of the model parameters.

Another possible approach for the estimation would be a nonrecursive identification strategy, for

example a procedure introduced by Blanchard and Perotti (2002). In the TVP VAR literature, this
7As Kilian and Lütkepohl (2017, p. 215) point out, the SVAR model must have K(K − 1)/2 restrictions to be

identified. Being recursively identified, my model has 6 restrictions which is a sufficient amount for the model to be

exactly identified.

13



identification strategy is used by Pereira and Lopes (2010) in their investigation of time-variation

of fiscal policy in the United States. Moreover, the identification strategy is widely used in other

macroeconometric literature. In their approach, Blanchard and Perotti use a trivariate AB-model

with real taxes per capita, government spending and output. They impose a restriction that the

government spending does not respond contemporaneously to prices and output. Variances of

shocks are left unrestricted. In the model, government spending follows Cholesky identification

being ordered as second. However, the identification strategy by Blanchard and Perotti requires

prior information on taxes, transfer and spending programs to construct parameters a1 and b1.

These elasticities ought to be most preferably determined outside the dataset. Moreover, if the

identification scheme by Blanchard and Perotti (2002) was used for estimating time-variation of the

Finnish government consumption multiplier, it would require that the tax variable is added in the

model. Since the recursive identification strategy is more popular in the recent TVP VAR literature

than non-recursive identification strategies, I will use it for my estimation.

2.4 Sensitivity to priors and model robustness checks

In Bayesian statistics, posterior probabilities of models are compared to each other to examine which

of the several models is better to supported by the prior beliefs and the observed data (Greenberg

2010). However, I already compare invariant VAR models with AIC and BIC to see which model

fits the data best. Therefore, I investigate the model’s sensitivity to priors using other estima-

tors. Following Nakajima et al. (2011), the inefficiency factor and the Convergence Diagnosis by

Geweke (1999) are used to check plausibility of the posterior inference for the given priors. The

estimators are designed to quantify if each parameter has efficiently convergenced by the MCMC

iteration. (Nakajima et al. 2011.) The derivation of the estimators can be found in the appendix C.

The model’s sensitivity to priors is tested by placing different sets of scale parameters and degrees

of freedom (0.01/2,1/2), (1/2,1/2) and (0.001/2, 0.001/2) for the Inverse-Gamma distribution. The

model seems to convergence efficiently under each set. Nevertheless, the results from the impulse

response analysis and estimation of a cumulative government consumption multiplier are observed

to be unrobust to alternative priors. The results from prior comparison based on the inefficiency

factor are illustrated in Table 2 in the appendix A. In addition, the government consumption mul-
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tiplier estimated with the TVP VAR model is compared to the government consumption multiplier

estimated with a time-invariant VAR model as a robustness check.

3 Results

3.1 Impulse Responses Analysis

Figure 1 illustrates how the variables respond to unexpected shocks in 1981:Q1, 1991:Q1, 2007:Q1

and 2017:Q1. In accordance with Nakajima (2011), the impulse responses are computed at each

quarter based on the average size of the stochastic volatility across the entire sample periods. Fur-

thermore, the posterior mean of time-varying parameters is used for computing the time-varying

impulse responses (Nakajima 2011). The results suggest that a positive government consumption

shock affects output positively in the first two periods, the output effect reaching its peak of around

0.2. On the third period, the output falls down reaching a value of -0.1, and then increases again to

0.1 on the forth period after the shock. An effect of the government consumption shock to output

seems to be vanishing after four quarters for all time periods estimated. Based on Figure 1, there

seems to be very little time variation in the response of the output.
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Figure 1: Impulse response of the variables

Similarly to output, private consumption responds positively to a government consumption

shock after one period, falling shortly negative on the second period and increasing again on the

third period after the shock. The results indicate that there is a correlation between a positive

shock in government consumption and an increase in private consumption within a year of the

shock. Furthermore, the response of inflation to a government consumption shock is positive after

one period of lag. There is very little time variation in the responses of inflation. However, it

seems to be slightly difficult to identify time variation of impulse responses based on Figure 1. It is

possible that taking log differences has thrown away a lot information. In the following subsection,

I investigate the hypothesis of time-variation in the government consumption multiplier more closely.
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3.2 Time-variation of the Finnish Government consumption Multiplier
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1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

Figure 2: Time-variation of the cumulative Finnish government consumption multiplier

The time variation of the government-consumption multiplier is illustrated in the Figure 2. To

report the time-varying government-consumption multiplier, I computed the cumulative response

of output to government consumption in a similar vein to Glocker, Sestieri and Towbin (2019). The

cumulative consumption multiplier is defined as the cumulative response of output in response to a
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cumulative increase in government consumption. The initial increase of the government consump-

tion amounts to one percent of GDP. The cumulative responses are computed for a two-year time

horizon. However, as mentioned by Glocker et. al. (2019), the results are observed to be robust

to alternative time periods. The technical interpretation of the cumulative public consumption

multiplier can be found in the appendix C.

Figure 2. shows that the cumulative government-consumption multiplier has varied over time

even though there is very little variation in the impulse responses. Since the impulse responses are

computed for each quarter based on the average size of the stochastic volatility across the sample

period, the time variation of the responses is very modest. On the contrary, the government-

consumption multiplier is a cumulative sum of the stochastic volatility of the responses for each

quarter, which causes the time variation in Figure 2. The results indicate that the government

consumption multiplier varied between 1.2 and 1.5 from 1985 to 1999. It seems that the government

consumption multiplier decreased to its lowest value in 1992 and then it started to increase until

reaching its peak value of 1.85 in 2008. Interestingly, the multiplier started to shrink after 2008

until 2010 when it started to gradually increase again. In conclusion, the results suggest that

the government-consumption multiplier has been fluctuated between 1.2 and 1.5 in 1985–1999 and

between 1.5 and 1.85 in 2000–2018.

4 Conclusions

Based on the results from my model, one cannot conclude whether the government consumption

multiplier for Finland has varied over time or not. The impulse responses suggest that there has not

been any time variation on the effect of the government consumption shock to output. Conversely,

my findings suggest that the government consumption multiplier has fluctuated over time between

1.2 and 1.85. It might be that taking log differences has thrown away a lot information from the

data. Despite the complexity of the model, it does not provide any clear explanation for the in-

crease of the cumulative Finnish government consumption multiplier. For more credible result the

confidence interval bands are needed to present for the impulse responses.

For further research, I suggest two ways to enhance the model. First, an alternative structural
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identification strategy could be chosen to capture all movements in the A0 matrix instead of the

recursive identification. Second, the scale paramaters and degrees of freedom for the Inverse-Gamma

distribution in the hierarchical prior could be estimated using a more complicated method such as

the delta-method. This might yield more accurate estimation for the Finnish data.
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Appendices

A Estimation results for the model paramaters

The MCMC iteration is computed for M = 20000 draws after the initial 1000 draws is being dis-

carded. The posterior means, standard deviations, the 95 percent credible interval, the Convergence

diagnostics factor by Geweke (1999) and the inefficiency factor for each parameter of the model

are reported in the table 1. Convergence diagnosis for each parameter is plausible apart from Σh2 .

However, the inefficiency criterion is very low, less than 100 for each paramater, which indicates

that sampling for the parameters is efficient. Nonetheless, the posterior means, standard deviations

and the 95 percent credible interval seem to be really tight.

Parameter Mean St.dev 95 % U 95 % L CD In.ef

Σβ1 0.0034 0.0009 0.0022 0.0054 0.537 39.89

Σβ2 0.0034 0.0009 0.0022 0.0056 0.631 28.62

Σa1 0.0035 0.0009 0.0022 0.0057 0.933 33.45

Σa2 0.0035 0.0010 0.0022 0.0058 0.159 42.06

Σh1 0.0035 0.0009 0.0023 0.0059 0.013 37.89

Σh2 0.0034 0.0009 0.0022 0.0055 0.593 27.86

Table 1: Estimation Result for Each Parameter in the Model

Sample autocorrelation, the sample paths and posterior densities of the benchmark model vari-

ables are illustrated in the Figure 3. Sample paths in the middle of the picture seem to stable and

the posterior densities at the bottom of the picture are decreasing rapidly, which indicates that the

samples drawn by the MCMC sampling are uncorrelated.

Posterior means and one-standard deviation bands for σ2
it = exp

(
hit), at and for the free ele-

ments of A−1
t illustrated in Figure 4, Figure 5 and Figure 6, respectively.

The inefficiency factors computed for different sets of prior distributions are shown in Table 2.
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The inefficiency factor shows the number of uncorrelated samples in the MCMC iteration. According

to Nakajima et. al. (2011), the inefficiency factor less than 100 is considered to be good. Even

though the size of the inefficiency factor differs from each M = 20 000 computed, it suggests if the

posterior inference is plausible for given priors.

Figure 3: Sample autocorrelation (top), the sample paths (middle) and the posterior densities

(bottom)
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Figure 4: Posterior mean and one-standard deviation bands for σ2
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hit)
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Parameter IG(0.01/1, 10/2) IG(0.01/2, 1/2) IG(1/2, 1/2) IG(0.001/2, 0.001/2)

Σβ1 39.89 1.45 1.80 32.14

Σβ2 28.62 1.02 1.44 32.08

Σa1 33.45 36.01 29.11 43.83

Σa2 42.06 30.81 41.37 42.12

Σh1 37.89 56.86 36.48 32.70

Σh2 27.86 35.62 35.80 30.11

Table 2: The inefficiency factors

28



B Data

1970 1980 1990 2000 2010 2020

0

5

10

15
p

1970 1980 1990 2000 2010 2020
-4

-2

0

2

4

6
G

1970 1980 1990 2000 2010 2020
-6

-4

-2

0

2

4
C

1970 1980 1990 2000 2010 2020
-10

-5

0

5
x

Figure 7: The constructed time series of the model variables (p = inflation, G = real government

consumption, C = private consumption and x = real GDP)

Time series of the model variables are illustrated in Figure 7. The series of real government con-

sumption Gt, real private consumption Ct and real GDP series xt are divided by the total population

of Finland, logaritmised and first order differenced. Finally, the series are multiplied by 100. The

inflation series pt are constructed by taking an annual differential from the GDP deflator, which

is calculated by subtracting the real value GDP from the nominal value GDP and multiplying the

result with 100.
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Figure 8: The ratios of tax series and GDP series T/Y, real private consumption series and GDP

series C/Y and real government consumption series and GDP series G/Y.

The ratios of nominal net tax income series and GDP series T/Y, real private consumption series

and GDP series C/Y and real government consumption series and GDP series G/Y are illustrated

in Figure 8. The tax series is constructed by subtracting tax transfers from tax revenues.

C Theoretical Framework

C.1 The Derivation of the Model

My model is a slightly modified version of the TVP VAR model used by Nakajima et al. (2011).

Following Nakajima (2011) and Primiceri (2005), I start with writing a basic VAR model

Ayt = F1yt−1 + · · ·+ Fsyt−s + u, t = s+ 1, ...n (11)
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where yt is a kx1 vector of variables and A and F1, F2,...Fs are kxk matrices of coefficients.

Following Nakajima et al (2011) and Primiceri (2005), I assume that A is a lower triangular matrix

A =


1 0 . . . 0

a21,t
. . . . . .

...
...

. . . . . . 0

ak1 . . . ak,k−1 1

 . (12)

Hence, the simultaenous relations of the structural shocks are specified by recursive identification.

I also assume that ut ∼ (0,ΣΣ), where

Σ =


σ1,2 0 . . . 0

0 σ2,t
. . .

...
...

. . . . . . 0

0 . . . 0 σn,t

 . (13)

In accordance with the study of Nakajima et al. (2011), the model (11) can be written in the

reduced form VAR model:

yt = B1yt−1 + · · ·+Bsyt−s +A−1Σεt,

εt ∼ N
(
0, Ik

)
.

(14)

In the reduced form VAR model, Bi = A−1Fi for i = 1, . . . s. Following Nakajima et al. (2011), I

stack all the elements of the Bi to the form β
(
k2s×1 vector). I also define Xt = Ik�

(
y′t−1, . . . , y

′
t−s
)

where � is the Kronecker product.

Next, the the model can be written in a time-invariant VAR form:

yt = Xtβ +A−1Σεt (15)

By allowing the all the paramaters to change over time t = s+1, . . . , n, the time-invariant model

can be transformed to a TVP VAR model with stochastic volatility:
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yt = Xtβt +A−1Σtεt,

t = s+ 1, . . . , n.
(16)

In addition, I define at = (a21, a31, a32, a41, ak,k−1)′ as a vector of lower triangular elements of At
and ht = (ht1, . . . , hkt)′ with hjt = logσ2

jt for j = 1, . . . , k and t = s+ 1, . . . , n. In the similar vein

to Nakajima et al. (2011), I assume that the parameters βt, At and Σt follow the first order random

walk process:

βt+1 = βt + uβt ,

at+1 = at + uat,

ht+1 = ht + uht

(17)


εt

uβt

uat

uht

 ∼ N
0,


I 0 0 0

0 Σβ 0 0

0 0 Σa 0

0 0 0 Σh



 , (18)

where t = s + 1, . . . , n. Also, I assume that initial states of parameters follow normal distribution

as βs+1 ∼ N(µa0 ,Σa0), as+1 ∼ N(µa0 ,Σh0) and hs+1 ∼ N(µh0,Σh0), where Σβ , Σa and Σh are

diagonal matrices.

C.2 The Theoretical Framework of the Estimators

I use the Convergence diagnosis by Geweke (1999) and the inefficiency factor defined by Naka-

jima et al. (2011) to check the plausibility of the posterior inference. In the accordance with

Nakajima et al. (2011), I compute the CD statistics by CD =
(
x̄0 − x̄1

)/√ ˆσ2
0/n0 + σ2

1/n1, where

x̄j = 1
nj

∑mj+nj−1
i=mj

x(i). x(i) is the ith MCMC draw and
√

ˆσ2
j /nj is the standard error of x̄j for

j = 0, 1. Following Nakajima et al. (2011), I set m0 = 1, n0 = 1000,m1 = 5001 and n1 = 5000 and

compute the σ̂2
j using a Parzen window with bandwith Bm = 500. (Nakajima et al. 2011)

Following Nakajima et al. (2011), I define the inefficiency factor as 1 + 2 ∼
∑Bm
s=1ρs, where ρs is

defined as the sample autocorrelation at lag s.
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C.3 The Technical Definition of the Cumulative Government Consump-

tion Multiplier

I follow Glocker et al. (2019) to compute the cumulative government consumption multiplier for

Finland. In their paper, the cumulative government consumption multiplier as is defined as follows:

CMP |t =
∑P=1
j=1 xj

(
Ξt
)∑P=1

j=1 gj
(
Ξt
) ∗ 1

µt
(19)

where xk
(
Ξt
)
is the impulse response function of output at horizon k in period t, gt

(
Ξt
)
is

the corresponding government consumption response. Ξt consists of all coefficients and variance-

covariance matrix estimates of the TVP-VAR model. 1/µt is a conversion factor that rescales

the impulse responses of output(in percent) to a government consumption shock (in percent) by

the inverse of government consumption share. P denotes the time horizon that the government

consumption multiplier is reported. (Glocker et al. 2019.)
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